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Tensile-Property Characterization
of Thermally Aged Cast
Stainless Steels nsing Neural Networks.

Atef Nema
Materials Engineering Department, College of Engineering,
Basrah University, lrag

Abstract

The effect of thermal aging on tensile propertics of cast stainless steels during setvice
in light water reactors has been evaluated and recorded by the Argenne National
Laboratory.

Tensile data for several experimental and commiercial heats of cast stainless steel
(CF-8M) are presented for predicting the change in tensile flow and yield stresses and
engineering stress-strain curve as a function of time and temperature of service in the
light water reactors using Neural Networks.

Thermal aging increase the tensite strenpth of this type of steel. The result and
correlation described by this work may be used for assessing thermal embitterment of
cast stainless steel compenents.
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Introduction

Cast duplex stainless steel used in light
water reactor (LWR} systems for
primary pressure-boundary components
are susceptible to thermal embitterment
at reactor operating temperature.
Thermal aging of cast stainless stee] at
these temperatures causes an increase in
hardness and tensile strength and
decrease in ductility, impact strength
and fracture toughness of the materiat.
Investingation at Argonne National
Laboratory has shown that the thermal
embitierment of cast stainless steel
component may occur within the reactor
design lifetime of 40 yr. [1]j

This report presents tensilc-property
data on several heats of cast siainless
steel aged up to 58000 h at temperature
between 290C° and 450C°,

The kinetics of thermal embitterment
depends on both material and aging
parameters. [2]

A neural network is a non-linear system
consisting of a large number of highly
interconnected processing units, nodes
or artificial neurons. Each input signal
is multiplied by the associated weight
valug and summed at a neuron. The
result is put through activation

function to generate a level of activity
for the neuron. This activity is the
output of the neuron. When the weight
value at each link and the conpection
pattern are  determined, the neural
network is trained. This process is
accomplished by learning from the
training set and by applying for certain
learmning rule. The trained aetwork can
be used to generalize for those inputs
that are not included in the training set
[3]

The first structural  engineering
applications of neural network go back
only to the end of 1980s [4]. Since then,
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a wide range of applications has
emerged,

These applications have shown the
robustness of the neural network in
solving complex mechanics and
engingering problems and its promising
future development. With a history
traced to the early 1940s, and two
periods of major increases in research
activities in the early 1960s and after
the mid-1980s, Artificial Neural
Networks (ANN) have now evolved to
be a mature branch in the computational
science and engineering,[3] They have
found numerous applications in science
and engineering, from biological and
medical sciences, to information
techmologies  such  as  artificial
intelligence, pattesn recognition, signal
processing, In the field of structural
engineering, there have been a ot of
attempts and researches making use of
Neural Network (NN) to improve
efficiency or to capture relations in
complex analysis or design problems.
Hajela et al, 1991 {5] used Back
propagation Neural Network (BPNN) to
represent the force-displacemnent
relationship in static structural analysis.
Such models provided computational
cfficient capabilities for reanalysis and
appeared to be well suited for
application in numerical optimum
design,

Adeli and Hung 1994 [6] developed an
adaptive conjugate gradient learning
algorithm for training a multilayer
neural network and applied it to
structural engineering. The problem of
arbitrary trial and error selection of the
learning  and momentum  ratios
encountered in the momentum back
propagation algorithm Wi
circumvented in the new adaptive
algorithm. Kany and Yoon 1994 [7]
described the configuring and training
of neural network for truss design
application and explored the possibie
roles for neural network in structural
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design  problems. Zeng 1995 [B]
mapped a strmctural analysis problem
onto  continucus  Hopfield neural
network by mcans of the connection
weights represented by the coefficient
of the stiffness matrix and the nodal
loads of bar, beam and triangular
elements as the inputs 1o the network.
Abdalla and Stavroulakis 1995 [9]
applied neural network {NN) to
represent experimental data te model
the behavior of semi-rigid steel
structure connegctions, which are related
10 some highly nonlinear effact such as
local plasticization etc.

Mukhertjee et al. 1996 [10] mapped the
relationship between the slenderness
ration, the modulus of elasticity and the
buckling load fot columns.

Arsian and Hajela 1997 [11] described
an approach for a multilevel
decomposition-based design
optimization, This approach allowed for
a more precise non-linear representation
of the coupling as opposed te linear
representation  based on  optimal
problem parameter sensitivity, The
effectiveness of the approach was
demonstrated through the application to
twa structure optimization problems.
Hajela 1998 [12] has applied the binary
states Hopfield neural network to the
optimization of a truss structure. This
optimization assignment was based on a
particular member being assigned to a
special position so as to reduce the
overall shape distortion and minimize
the member pre-loads. The value of the
design variable was unity when the
member is assigned to position § and
zero otherwise. Lu 2060, [13] used a
two layered back propapation neural
network to predict the local and
distortional behavier of cold-formed.
Steel compression members.

After training, the generalization of the
veural network was tested by patterns
nol included in the training patierns.
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Artificial neural networks 1o predict the
effect of thetmal aging on the tensile
properties of cast stainless steel.
(ANNs)Y are model-free estimators that
perforrn robust  multidimensional,
nonlinear reactor mapping [6], the most
commonly used ANN is the standard
back propagation network in which
every layer is linked or connected to the
immediately previous layer.

The  relationships  between  the
parameters becing modeled and the
actual behavior of thege variables in the
real world must be comelated as
precisely as possible. However, in most
cases this is not possible, and several
approXimations and simplification are
often made at various stages.

When dealing with sparse, noisy, or
incomplets dzta [8].

In addition, conventional methods lack
generalization, fail to incorporate
statistical and systematic fluctuations,
and in most cases are limited to finite
state spaces.

Tensile property at our study is not a
very difficult to model. Beside of a
closely nonlinear.

Therefore a finite number of parameters
that need to be accurately defined if
such systems are to be properly
characteristics.

In this paper , we give an over all
describe to the characterization of the
mechanical behavior  after thermal
aging , on the cast stainless steel
depending on time or temperature , and
also approach to material design in
which the use of neural networks was
one stage in a process that also made
use of genetic algerithms to accurately
predict and optimization.

Rearrange the data and ciassified on the
groups depending on the time of aging
with  stresses for the different
temperalures, and the temperatare of
aging with the stresses for all the aging
time.

Separate the data and take an average to
these groups.
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The database that we used selected
carefully so as o include all range of
temperature and the time for all the cast
stainless steel used in the (L.W.R)
applications,

Two-hidden layer back propagation
neural network has been used to predict
the hehavior. The effects of the
Parameters, such as the number of
nades in the input layer, output layer
and hidden layer, the pre-process
{normalization) of the training patterns,
the weight-factors initialization and the
selection of the leamning rate and
momenium coefficient, on the behavior
of the neural network have been
checked.

Provide the (ANNs) with a three
parameter as an  input data  (test
tempetature, aging temperatures, and
aging time), on the same form we feed
the neural network with the target
representing by the yield and ultimate
stresses.

Afier that we take a mean and standard
deviation for all the input and the target
output.

Experimental work:-

Tensile test were comducted at (ANL)
and at the material engineering
associates (MEA).The orientation and
location of the mechanical test
specimens from pipe sections, slabs,
and KRB pump cover plate are shown
in Fig. (1&2).[1]

Figura {1}, Ortantation and keablon of tha mechanlizai-
lezt spmcimans taken from (a) and (h) pipa sactiona
and {c} slabs Figure

Figure (2}, Orientation and ecation of tha mechanicat~
o5 specimans taken from KRB pump cover piate

The specimen blanks from the
experimental and commercial heats
were aged at (290,320,350,400845(0
C®) for times up to 58000 h , tensile test
at ANL were performed according to
ASTM specification EB in an Instron
tensile test machine with a maximum
loading capacity of 90KN, cylindrical
specimen with a diameter of 5 mm, and
a gauge length of 20.3mm were used for
all the tests [13 .

Tensile test were conducted at room
temperature and 290 C*, on the five
gxperimental heats (290450 C®wp to
58000 h . The resnits from the tests used
as a data to the neural networks .
Rearrange the data and classified on the
groups depending on the fime of aging
and the temperature of aging with the
stresses, and then separate the data and
take an average to these groups.

The datebase used was selected
carefully so as to include all range of
temperatures and the time for cast
stainless steel used in the (L.W.R.).
Provide the (ANNs) with a thees
parameters as  input data  Test
temperatures, aging temperstures, and
the aging time, on the same form fesd
the net with the target representing by
the yield and ultimate stresses afier that
we take a mean and standard deviation
for ail the input and the target output.




NEURAL NETWORKS:

The neural networks used on this study
include the standard back propagation
network with one hidden layer, and with
two hidden layer, as a result we depend
on the two hidden layer net, because of
this network provide a quick training to
those that provide excellent
generalization,

The advantapges of more hidden layers
are that different activation functions
can be selected.

The important step was the design of
the neural network, as we say above, we
depend on the two hidden layer
network, from these number of hidden
we choose the best collection of node
depending on the factor R [3 13 5
2].As shown in Fig.(3)

Ultimalcsu  Yield ey
& A

Onatpit {2 Neunons)

2nd hidden layer oG

(5 Newrons) i i

15t hidden Yayeg o s

{13 Nm@
Wit

Test  Aging  Aging

Temp. Temp. Time

Fig. (3} The strwsturs of the proposed MM maodel

The activation function used to create
correlation between the input and the 1%
hidden layer and between the 1% and 2™
hidden layers was a (tansig) function,
and a (purelin) function between the
hidden layer and the output.

There are an eight different activation
functions were used, as below

Fxy= % (Standard logistic)
+

E—F
flx)=x

{Linear)
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f(x) = tanh{x) (Hyperbolic tanh)
£(x)= tanh(}.5%)
f(x) = sin(x)

fixy= 2 ——1 (Symmetric logistic)
1+ e
f{xy= E_J (Gaussian)

F(x)=1-p™* (Gaussian compliment}
While the most commonly used
activation is logistics, in many cases
other function or combinations of
functions are known to perform better.
On the training method, the most
important  ¢ritetion  for  successful
network training and optimization is
accurate generalization. Care must be
taken to prevent the memorization of
input data.

An evaluation set is created either from
the training data or from a separate set
of data with known cutput.

Then this will used to check the
accuracy of the trained network. The
process of selecting the final network,
and the training optimization involved
covers a number of steps. The
correlation coefficient 2 is a statistical
indicator usually applied to multiple
regression analysis. As shown in

Fig. (4)

R Y E L L E RN

Mumiber of Wikdar readas

Fig. 4. Eeroe plois for variation of number of hidden nodes
in a double hidden layer back propagation neura! network.

Figute (4} tended to flatten out after 15
nodes, sugpestion some  statistical
fluctuation when using more than 13
nodes, this may indicate that the (near}
optimum number of nodes for
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accurately defining the given problem
was reached.

If compares the accuracy of the model
1o the accuracy of a trivial bench mark
model.

A perfect fit would result in R* value of
one, a very poor fit less than zero.

In this study we depend on the
{irainscg) as a training function and as a
result get R*=0.9738. As shown in

Fig.(5)

E§ 8 =

Durtgnll

: 8

-
=

] Hi no ] w0 o Ta
TARGET T

Fig.{51Actual vorsus predictad: owpul when final model is
applied.
Take a 50 shows on the iteration sieps,

with 20000 epochs (epochs meaning the
time to reach the target) to reach the
goal which is equal to §.e-6.

After choose and check our parameters
the neural network do & simulation
between the target and the nebwork
output and take a mean and standard
deviation to the output.

Finally got a best line between the
target and the neural network output.

RESULT&DISSCUSION:

There are several possible networks. In
the end, one network with a given set of
paramneters must be selected to make
prediction.

This involves a considerable a mount of
training with all network types for all
possible parameter value combinations.
Here select one network from a double
network architecture that used for our
fina!l prediction, we select network that
rrain quickly and provide acceptable
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results as compared to the best network
found.

The result of tensile properties of cast
stainless steel indicate that the increase
in yield stress due to thermal aging in
much lower than the increase in
ultimate siress.

From the besi (ANNs) found in this
work 10 describe the effect of thermal
aging on the cast stainless stecl
properties. We present a procedure and
correlation for predicting the change in
the tensile vield and ultimate stresses
and engineering stress-strain curve of
cast stainless steel components that due
to thermal aging service in LWRs at
280-330C",

The correlation describe in this paper
may be used to assess thermal
embitterment of cast stainless steel
COMPONENts.

The estimated tensite properties may be
used as input 1o a structural analysis
code. Such as leak before break,
analysis of nuclear power plant piping
or for performing fitness for service
evaluations of  safety  related
components, in support of plant life
extension and Jicense renewal.

As a result we have a clear describe t0
the effect of aging temperature (the
application  temperatures) on  the
different aging time at both the
R.T.(25,290C®) as shown in Figs.(6 to
13} for all the aging time respected in
this work the yield and ultimate stresses
inerease  with imcrease the aging
temperature, and this increasing be clear
after the teraperature 200C°, and for all
these curves the ultiraate increase mofe
than the yield increasec. Besids of these
results there are a clear increase in the
ultimate and yield stresses when the test
occurs at a 290C" instead of at 23C°,

On the other hand, when we take the
effect of the aging time for all the
temperatures and at the room
temperature dependence here, as shown
in Figs. (14 to 19) we can find that the
yield and ultimate stresses increase with
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increasing the aging time for all aging
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temperature and this phenomena be .m] ot

¢lear afier the (30000h) aging time unil =" A

reaching the expected life (5800Ch) - , T L emmmE
aging time. 240 H_/H’—*_‘/‘ T
After this time we still have an increase St I |- e s a2
on the stresses for the temperature from = gt
(0-320 C%. At 320C° we have a el T

decrease in the stresses when reaching
the {60000h) in work.
This behavior be clear with increasing

I o " W 20 % X0 M 40 45
Hoimy e &

the aging time and aging temperature up
to (60000h).

These results give a clear describe to the
age of the cast stainless steel work in
the LWR applications and the effect of
the thermal aging on the stress and the
ultimate of this type of steel.

Fig.{7)Show the effecl of (he aging tcmperatures on the
yickl and citimate stresses at the aging time (=3570 h.for the
sl temp, T=250% & =000

2 2 B

[ —

Conclusions: : I
We show how neural netwotks can be ~ ‘ i
: = | oY 2t

successfully used to predict the T e T s e
properties of the cast stainless steel %ml L T S )
under a thermal aging condition. =1
We have that the siructure-praperty e e

i o SO W W M A W W o &
r¢lationships in cast stainless steel used K et

in LWR can be captured effectively be
neural nerworks,

In addition we can use networks to
show the desired properties, and the fine

Fig.(8)Show the eifecd of the aging wmperatures on the
yicld and ultimais siresses &1 the aging time t=30000 b
the test tetng T=28C* & T=20u""

range to the safety work.
™
LS - : I__,»-""

. I :m| [
e |

dgﬁ:ﬂ] . P -a—ullimay gy U 250 Eﬂ] ﬂ:ﬁmmm :
Eﬂu| g e LA T | E -hwmﬁc
:ml m__ L m. mey_ﬂ_];
<t =)

—-— I o

R N i .

T L B

0 50 100 150 MO 260 NG D 400 & US‘.‘IWWZ]]HIGH'{CM
Agng hihprmiure ¢, gl e C
Fig. (f)8how 1he effect of the aging temperatures cn the

yield and ultimel: siresses ot the aging time =10000 h, for
the test iemp. T=250" &Tm2000"

Flg (9)Show the cffect of the aging temperatures on Lhe
yield and ultimels stresses ol the aging time =5750 h for the
lesd temp, T=2 50" &T=3900"
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